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All-optical logic gate computing for high-speed
parallel information processing
Shuming Jiao1*, Junwei Liu2*, Liwen Zhang1, Feihong Yu3,
Guomeng Zuo1,3, Jingming Zhang3, Fang Zhao3, Weihao Lin3 and
Liyang Shao1,3*

Optical computing and optical neural network have gained increasing attention in recent years because of their potential
advantages of parallel processing at the speed of light and low power consumption by comparison with electronic com-
puting. The optical implementation of the fundamental building blocks of a digital computer, i.e. logic gates, has been in-
vestigated extensively in the past few decades. Optical logic gate computing is an alternative approach to various ana-
logue optical computing architectures. In this paper, the latest development of optical logic gate computing with different
kinds of implementations is reviewed. Firstly, the basic concepts of analogue and digital computing with logic gates in the
electronic  and  optical  domains  are  introduced.  And  then  a  comprehensive  summary  of  various  optical  logic  gate
schemes including spatial encoding of light field, semiconductor optical amplifiers (SOA), highly nonlinear fiber (HNLF),
microscale and nanoscale waveguides, and photonic crystal structures is presented. To conclude, the formidable chal-
lenges in developing practical all-optical logic gates are analyzed and the prospects of the future are discussed.
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 Introduction
Nowadays  the  global  demand  for  computing  is  ever-in-
creasing  and  the  development  of  electronic  computers
faces bottlenecks  of  power  consumption,  heat  dissipa-
tion and response speed. Compared with electronic com-
puting,  optical  computing  has  the  potential  advantages
of high-speed  parallel  processing  and  low  power  con-
sumption.

Computer technology can be divided into two categor-
ies:  analog  computing  and  digital  computing.  In  the
realm of digital computing, logic gates are indispensable
devices and have  been investigated  extensively.  An ana-
logue computer models a computational task using con-
tinuously varying quantities of physical phenomena. Di-

gital computing uses binary encoding to process discrete
quantities.  For  electronic  computers,  digital  computing
is the dominant architecture because it  has considerably
better  accuracy,  reliability  and  flexibility  than  analogue
computing.  It  is  still  debatable  whether  the  mainstream
architecture of  future  optical  computing  will  be  ana-
logue or  digital.  Both all-optical  analogue computing1−17

and all-optical digital computing18−22 have been investig-
ated extensively in the past few decades. All-optical digit-
al computing is at least one of the feasible approaches to
achieve  the  final  objective  of  all-optical  computing  and
artificial intelligence. In addition, a huge amount of data
is transmitted worldwide through optical fibers every day
and  optical  signal  processing  of  transmitted  data23−25 is 
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another crucial application for all-optical logic gates. All-
optical signal processing of transmitted data includes en-
coding,  decoding,  format  conversion,  encryption,
switching, routing, multiplexing, error correction, etc.

In a modern digital computing system, logic gates are
the fundamental building blocks. Sophisticated computa-
tion tasks (e.g. a deep learning neural network with com-
plicated  structures)  can  ultimately  be  decomposed  into
basic  logic  gate  operations.  A  logic  gate  can  execute  a
Boolean function, normally with two binary input values
and one binary output value. There are different types of
logic  gates  (e.g.  NOT,  AND,  OR,  XOR,  NAND,  NOR,
XNOR) with varying input-output rules, as shown in Ta-
ble 1. Individual logic gates can be interconnected to cre-
ate a  logical  circuit  to  perform  more  complex  calcula-
tions.  A  number  of  NOR  or  alternatively  NAND  gates

can  be  used  to  reproduce  the  function  of  all  other  logic
gates. Both NOR and NAND gates are referred to as uni-
versal  gates.  Even though some effort  has  been made to
customize a new set of optical logic rules26,27, the Boolean
logic rules are still  widely adopted by most works in the
field of optical computing.

Logic  gates  can  be  realized  easily  by  transistors  in  an
electronic  computer.  A  transistor  is  a  kind  of  switch  in
which the  binary  state  of  one  electronic  signal  is  con-
trolled by another electronic signal. However, there is no
optical device exactly analogous to an electronic transist-
or.  The  optical  implementation  of  logic  gates  is  a  very
challenging technology and has received extensive atten-
tion in recent decades. A timeline of advances in optical
logic  gates  and  related  technologies  is  shown  in Fig. 1.
The  basic  idea  is  to  use  one  light  signal  to  control  the

 
Table 1 | Truth tables of common logic gates (A and B are input binary values; X is logic gate output).
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Fig. 1 | Timeline of advances in optical logic gates and related technologies.

Jiao SM et al. Opto-Electron Sci  1, 220010 (2022) https://doi.org/10.29026/oes.2022.220010

220010-2

 



binary state of another light signal. The number of logic
gate operations per second for an electronic transistor is
usually  limited  within  an  upper  bound  by  its  physical
working mechanism. Optical signals can theoretically be
processed at a much higher frequency than an electronic
transistor. Therefore, ideally, the response time of optic-
al logic gate is very short. Hence, many different schemes
for  optical  logic  gate  have  been  proposed.  There  is  no
doubt  that  depending  upon  the  scenarios  for  which  the
optical logic gates are applied, the possibilities for the fu-
ture are endless. At present, optical logic gates are imple-
mented in a wide variety of ways. In this paper, five types
of optical  logic  gates  are  mainly  introduced,  spatial  en-
coding  of  light  fields,  semiconductor  optical  amplifiers
(SOA),  highly-nonlinear  fiber  (HNLF),  microscale  and
nanoscale waveguides, and photonic crystal structures, as
shown in Fig. 2.  By  comparison with  previous  literature
reviews  of  all-optical  logic  gate  computing18−22,  this  is  a
more comprehensive summary that includes several  op-
tical technologies  not  covered  previously  and  many  re-
cent studies  in  the  past  three  years.  The  working  prin-

ciples of  different  optical  logic  gate  schemes  are  de-
scribed in the following sections.

 Spatial encoding of light field
Spatial  encoding  of  the  light  field  is  a  simple  and
straightforward way of performing optical logic gate op-
erations.  When  the  light  field  is  spatially  encoded  with
respect to  its  distribution  of  intensity,  phase,  polariza-
tion  or  other  dimensions,  it  can  carry  a  certain  amount
of binary information.  If  the light  propagates  and inter-
acts with a properly encoded mask, this binary informa-
tion can be transformed according to the rules of binary
logic  operations.  As  a  simple  example  of  light-intensity
spatial  encoding,  a  thin  film  can  be  divided  into  many
small  cells  and  each  cell  can  be  either  transparent  or
opaque, representing  the  binary  states  “1 ”  and  “0 ”  re-
spectively.  When  corresponding  cells  of  two  thin  films
overlap under conventional illumination, the light will be
blocked if  either  cell  is  opaque,  resulting  in  a  dark  state
(binary  state  “0 ”).  This  is  equivalent  to  the  AND  logic
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operation.  In fact,  all  sixteen binary gate  operations  can
be  realized  by  overlapping  multiple  transparency-en-
coded thin films with or without spatially  encoded light
illumination patterns28−32. A representative scheme is de-
scribed in ref.30.

For  inputs  A  and  B,  the  four  combinations  of  binary
values  are  represented  by  a  cell  consisting  of  four  sub-
cells. Only one of the four sub-cells will be white (trans-
parent)  and  the  remaining  three  are  black  (opaque)  as
shown  in Fig. 3(a).  Then  the  input  cell  denoting  A  &  B
and  a  particular  gate  cell  are  aligned  and  overlapped.
Each gate cell is also composed of four sub-cells and dif-
ferent gate cells are encoded according to the truth table,
as shown in Fig. 3(b). Finally, in the overlapping result, a
cell is “0” if all the sub-cells are black and “1” if any sub-
cell  is  white  regardless  of  its  position.  This  optical  logic
gate  scheme  is  similar  to  the  visual  cryptography
concept33−35, where multiple layers of thin films are over-
lapped for image pattern hiding.
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A=1, B=0
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Fig. 3 | Optical  logic  gates  created  by  the  superposition  of  spatially

encoded transparent thin films: (a) cells encoded for binary input; (b)

cells encoded for different logical operations30.
 

In  addition  to  transparency,  the  polarization  state  of
each cell in a mask can be also encoded for optical logic
computing36,37. For example, if one cell is encoded as ver-
tically polarized, a light with horizontal polarization dir-
ection  will  be  blocked.  However,  controlling  the  output
light intensity by modulating the polarization of light can

be suboptimal. A direct representation of binary bit val-
ues with the same light intensity and two orthogonal po-
larization  states  is  preferable38−42.  The  interaction
between  polarized  light  and  a  number  of  polarization
modulation masks are used to implement logic gates40−42.
One  polarized  optical  input  and  one  electronic  input
controlling the mask can jointly be converted to a polar-
ized optical logic gate output.

In a recent work43, a diffractive neural network system
has been  employed  to  perform  optical  logic  gate  opera-
tions,  shown  in Fig. 4.  An  input  coherent  plane  light
wave  is  spatially  encoded  with  respect  to  the  intensity
distribution according to two input binary values and the
type of logic gate operation. Then, the light field propag-
ates  forward  and  is  modulated  sequentially  by  several
metasurface  phase  masks  placed  separately  by  a  certain
distance. All  the  phase  mask  pixels  are  optimally  en-
coded. Finally, the light field is focused by the free-space
diffraction and phase  mask  modulation onto  one  of  the
two target  regions,  representing logical  outputs  “1” and
“0” respectively. A recent work shows that the multiple-
layer system can be simplified to a single-layer metasur-
face44.  Alternatively,  the  logic  states  can  be  represented
by  linear  momentums  instead  of  intensity  distributions
in a diffractive neural network system45.

Some spatial  encoding  methods  for  binary  optical  lo-
gic operations only need very simple and low-cost optic-
al setups,  such  as  two  overlapping  thin  films.  The  pro-
posed systems can potentially perform binary logic oper-
ations  in  parallel  for  many  input  bits  simultaneously.
However, they generally  have the  limitation that  the  in-
put and  output  binary  values  are  represented  in  an  en-
coded  format.  Interconnecting  a  previous  gate’s  output
to the next gate’s  input can be a challenge46.  Since some
non-optical encoding and decoding steps may be required

 

Optical logic operation by a diffractive neural network

Plane wave

Input Hidden

Output
z

y

x

1
1

0

0

+

Metasurface

Fig. 4 | Performing logic gate operations optically with a diffractive neural network system. Figure reproduced from ref.43, under a Creat-

ive Commons Attribution 4.0 International License.

Jiao SM et al. Opto-Electron Sci  1, 220010 (2022) https://doi.org/10.29026/oes.2022.220010

220010-4

 



if multiple  logic  gate  operations  are  cascaded,  it  is  diffi-
cult to  construct  an  efficient  large-scale  fully  optical  lo-
gic gate circuit.

 Semiconductor optical amplifiers (SOA)
An SOA is a compact semiconductor device that can be
controlled  to  amplify  a  light  signal.  There  are  several
nonlinear effects  in  SOA,  including  cross-gain  modula-
tion,  cross-phase  modulation,  four-wave  mixing  and
cross-polarization modulation, which can be exploited to
design logic gates47,48. SOAs can either operate logic func-
tions alone  or  in  collaboration  with  interferometric  ar-
chitectures.

 Cross-gain modulation (XGM)
XGM has been investigated extensively to design optical
logic gates with SOA49−53. It is assumed that there are two
input  light  beams  for  each  SOA.  One  is  the  probe  light
and  the  other  is  the  much  stronger  pump  light.  The
probe light cannot pass through the SOA when the pump
light  saturates  it.  The  probe  light  can  go  through  the
SOA when the pump light is absent. There is an inverse
relationship  between  the  intensity  of  the  output  probe
light and pump light,  referred to as  the XGM effect.  An
XOR gate  can be  realized using two SOAs based on the
XGM effect54, as shown in Fig. 5(a).

In this system, two input light signals A and B are sim-

ultaneously  transmitted  to  two  SOAs  for  corresponding
optical  signal  amplification.  The  output  signals  of  the
two SOAs are combined. When both A and B are 0, the
output  will  be  certainly  0  since  there  is  no  input  probe
signal. When A and B are both 1, the output will be still 0
since  both  two  SOAs  block  the  pass  of  probe  signals.
However, when A=0, B=1 or A=1, B=0, the probe signal
will  pass  one  of  the  SOAs  and  the  output  signal  is  1.
These  results  are  consistent  with  the  XOR  logic  gate
rules.

Other  logic  gates  such  as  NOR,  AND,  NAND  and
AND –NOR  can  be  implemented  with  different  SOA
configurations  using  XGM  as  well49−52.  For  example,  if
one probe signal in Fig. 5(a) is replaced with a clock sig-
nal  with constant non-zero intensity shown in Fig. 5(b),
a NAND gate can be realized51. The system will only have
a zero output when both A and B are 1.

 Cross-phase modulation (XPM)
The  pump  light  injected  into  a  SOA  will  modulate  not
only the amplitude but also the phase of probe light. The
XPM is more commonly combined with interferometric
architectures to implement optical logic gates. However,
a transient cross-phase modulation (T-XPM) with pico-
second-pulse  injection  can  be  employed  to  implement
various logic gates using a single SOA and band pass fil-
ters55,56, shown in Fig. 6.
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Fig. 5 | (a) XOR gate with two SOAs based on XGM effect (input A and B). (b) NAND gate with two SOAs based on XGM effect (input A and B).
 

λA

λ
d1: OR

λ
d2: AND

λ
d3+λd4

λ
d2+λd3

λ
d3: NOR

λ
d4: XOR

SOA

OBF1

Odl1

Odl2

NAND

XNOR

OBF2

OBF3

OBF4

λB

λP

0

−15

−10

−5

0

5
NOR

: XGM region

: T-XPM region

P10

P11

XOR OR AND

0.5 1.0

Filter detuning (nm)

1.5 2.0 2.5

a b

Fig. 6 | Optical logic gates with SOA based on T-XPM: (a) optical setup; (b) frequency spectrum of the output probe signal. Figure reproduced

with permission from ref.56, © The Optical Society.

Jiao SM et al. Opto-Electron Sci  1, 220010 (2022) https://doi.org/10.29026/oes.2022.220010

220010-5

 



P11 P10

Two input signals A and B are both used as the pump
light and  there  is  an  additional  probe  light  signal.  Be-
cause of  XPM,  the  output  probe  signal  will  have  differ-
ent  frequency  spectra  when  the  two  input  signals  are
both  1  ( )  or  only  one  input  signal  is  1  ( ). By  per-
forming  bandpass  filtering  at  the  selected  frequency,
various  logic  gates  can  be  implemented  and  the  filtered
light intensity is taken as the output of the logic gate.

 Four-wave mixing (FWM)

ω1 ω2 ω3
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As  shown  in Fig. 7, FWM  occurs  when  three  input  sig-
nals ,  and  with different  frequencies,  or  two in-
put  signals  and  with  different  frequencies,  are
transmitted to SOA. The latter  case  is  referred to as  de-
generate FWM. In FWM, a new idle signal with a differ-
ent  frequency   will  be  yielded.  If
the  original  phases  of  the  three  input  signals  are , 
and  respectively,  the  phase  of  the  idle  signal  will  be

.  For the degenerate case,  the idle
signal will have a frequency of  and a
phase of .
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Fig. 7 | (a) Four-wave mixing. (b) Degenerate four-wave mixing.
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For degenerate FWM, the idle signal can only be gen-
erated  when  two  input  signals  at  and  are  both
present,  which  can  be  considered  as  an  inherent  AND
gate57.  Alternatively,  when  one  input  signal  is con-
stantly non-zero and one of the other two signals  and

 is non-zero or both are non-zero, the same idle signal
can be  generated  if . This  is  equival-
ent to an OR operation58.

In addition, it should be noted that FWM only occurs
when  the  polarization  states  of  all  the  input  signals  are
identical.  The  idle  signal  generated  will  also  have  the
same polarization  state.  Logic  gate  computing  with  de-
generate  FWM  can  be  implemented  using  this
property59. For example, two input signals are encoded as
being in one of two orthogonal polarization directions r
or s representing binary input values 0 or 1 respectively.
When  both  input  signals  have  identical  polarization
states, the intensity of the output idler signal will be non-
zero (representing 1). Otherwise, the idler signal will not
be  generated  and  has  zero  intensity  (representing  0).

Thus, an XNOR gate is obtained. Further, by only detect-
ing the intensity of the idler signal in only one polariza-
tion direction, a logic value 1 is only obtained when both
input signals are 0 (r state) or both input signals are 1 (s
state). Consequently,  NOR  and  AND  gates  can  be  real-
ized.

π

ω1 ω2 ω3

φ4 = φ1 + φ2 φ1 = π φ2 = π φ4 = 2π

An  alternative  approach  of  designing  logic  gates  is
based on the phase relationship60−63. The binary logic val-
ues 0 and 1 are represented by the phase 0 and  of in-
put  (or  output)  signal  respectively.  The  input  signals  at

 and  carry data and the input signal at  has a con-
stant phase. The constant phase can become 0 after can-
cellation.  Therefore  the  phase  of  idle  signal  is

. If , , and  (equivalent
to 0),  an XOR gate operation can be performed base on
this relationship.

When  FWM  is  combined  with  other  effects  such  as
XGM and  T-XPM,  a  multi-function  reconfigurable  sys-
tem  for  multiple  types  of  logic  gates  can  be
constructed64−68.

 Cross-polarization modulation (CPM)
The CPM in an SOA can modify the polarization state of
the input  signal  and  has  been  investigated  for  imple-
menting  different  logic  gates  such  as  XOR,  AND,  OR
and NAND69−73. As an example, we use the implementa-
tion of an AND gate72 to illustrate the working principle
of CPM, as shown in Fig. 8.  A pump signal and a probe
signal  at  two  different  frequencies  are  injected  into  the
SOA. A polarizer is placed in the output of the SOA. Ori-
ginally,  the  polarization  direction  of  the  probe  signal  is
orthogonal  to  that  of  the  polarizer.  If  the  probe  signal
alone is 1, the final orthogonally polarized output signal
passing through the polarizer will  also be 0.  If  the input
probe signal is 0, regardless of the pump signal intensity,
it  is  evident that  the final  probe output will  be 0.  When
both  the  probe  signal  and  pump  signal  are  present,  the
pump signal  changes  the  polarization state  of  the  probe
signal because of CPM. Then the polarization directions
of the probe signal and polarizer will be only partially or-
thogonal and some amount of the probe signal will pass
through the polarizer. In consequence, the output probe
signal will only be 1 under this circumstance resulting in
an AND gate.

 SOA-assisted interferometric architectures
The XPM effect in SOA can impose a phase shift on the
input light signal and the phase change can be converted
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to a  more  easily  detectable  intensity  change  by  interfer-
ence. Consequently,  SOA-assisted interferometric  archi-
tectures  have  been  explored  extensively.  SOA  is  most
commonly combined with Mach–Zehnder interferomet-
er (MZI) and Sagnac interferometer74.
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Fig. 8 | Optical AND logic gates with SOA based on CPM.
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π
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In  the  SOA-MZI  configuration,  two  SOAs  are  usually
placed in  the  upper  and  lower  arms  respectively.  Cop-
ropagation75−85 and  counterpropagation86−88 are two typ-
ical  configurations  of  SOA-assisted  MZI,  as  shown  in
Fig. 9. The  operating  principles  of  these  two  configura-
tions  are  similar.  Two  data  signals  A  and  B  are  each
launched  into  one  of  the  two  arms,  correspondingly.  A
probe  signal  (clock  pulse)  is  split  equally  into  two  arms
and recombined at the T-port through two 3 dB couplers
(1∶1 couplers) in the MZI. From the working mechan-
ism of MZI, the output probe signal from the upper arm
and that  from the lower arm will  have a  phase differ-
ence if  both data signals  are 0.  There will  be destructive
interference  and  the  output  probe  signal  will  be  also  0.
On  the  other  hand,  if  both  the  data  signals  are  1,  the
phase of probe signal in each arm will be modified in the
same way by XPM in SOA. In the T-port,  the final  out-
put will still be 0 since the relative phase difference is still

.  However, if only the data signal for the upper arm or
the  lower  arm  is  1  (the  other  is  0),  the  probe  signals  in

the two arms will have an extra phase difference and de-
structive interference will not occur at the T-port. In this
condition, the output probe signal in the T-port will be 1.
Consequently, the  SOA-MZI  configuration  can  be  em-
ployed to construct an XOR gate75−78,86−87. One advantage
of the  counterpropagation  configuration  over  the  cop-
ropagation  configuraton  is  that  the  filters  in  the  output
do not need to reject control signals as they propagate in-
versely87.

Other  logic  gates  such as  AND and NAND gates  can
be realized by a slightly modified SOA-MZI system79−81,88.
For example,  an AND gate can be realized by removing
the data signal in the lower arm or adding an extra probe
signal  in  the  upper  arm79,80.  When  two  or  more  SOA-
MZI configurations  are  combined  in  parallel,  more  di-
verse logic gates can be implemented82−85 including NOR,
OR, XNOR and NAND gates.

 Sagnac interferometer configuration

0

π

0

The Sagnac interferometer, referred to as a terahertz op-
tical  asymmetric demultiplexer (TOAD)89 in some stud-
ies, consists of a loop with clockwise and counter-clock-
wise propagating light signals. SOAs can be placed at ap-
propriate  positions  in  the  loop  to  implement  logic  gate
operations90−95. An  example  of  an  XOR  gate  configura-
tion  with  two  symmetric  SOAs  is  shown  in Fig. 10(a).
The  probe  signal  is  split  equally  by  a  3  dB  coupler  and
two  separate  light  signals  propagate  clockwise  and
counter-clockwise. When both data signals are  and the
two SOAs are off, two counterpropagating probe signals
finally  recombine  with  phase  difference  at  the  output
Port D. This destructive interference will yield an output
probe signal of . When both data signals are 1 , the two
symmetric SOAs will impose an identical XPM effect on
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Fig. 9 | SOA-MZI configuration: (a) copropagation; (b) counterpropagation.
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both  clockwise  propagating  signals  and  counter-clock-
wise  propagating  signals  since  data  A  only  affects  the
right SOA and data B only affects the left SOA. The relat-
ive phase difference will still be  and the output will be

. When only data A or data B is 1, constructive interfer-
ence will occur and the output probe signal will be 1 . If
only one data signal  is  used,  then there will  be an AND
relationship between the data signal and probe signal, as
shown in Fig. 10(b).

In  this  configuration,  two  SOAs90,91,93 can  be  replaced
with a single SOA92,94. When multiple SOA-assisted Sag-
nac  interferometers  are  cascaded  and  combined,  more
logic functions can be realized95.

Furthermore, SOA can be combined with other inter-
ferometric configurations including Michelson interfero-
meters  (MI)43,  ultrafast  nonlinear  interferometers
(UNI)96−98,49 and delayed interferometers (DI)99−103. Com-
pared with the SOA architecture, SOA-assisted interfero-
meter architecture is generally more suitable for integra-
tion but its stability is poor and it is affected by addition-
al noise20.

Despite the  advantages  mentioned above,  SOA is  rel-
atively slow to take off because of the time it takes to re-
cover gain and phase. A new type of SOA, Quantum dot
SOA (QD-SOA) can achieve a much greater speed of op-
eration104−112. Another two types of SOA, reflective SOAs
(RSOA)113 and  photonic  crystal  SOAs114,  have  also  been
attempted recently.

 Highly-nonlinear fiber (HNLF)
When a light signal propagates through a HNLF, the re-
fractive index of the fiber material will change due to the
Kerr  effect.  Multiple  light  signals  will  interact  with each
other when they pass through a HNLF. Different nonlin-
earity  effects  like  those  in  SOAs  are  also  present  in  a

HNLF  including  self-phase  modulation  (SPM),  cross
phase modulation (XPM), four wave mixing (FWM) and
polarization rotation.

As  with  the  T-XPM  in  SOA,  SPM  and  TPM  can
broaden the spectrum of output light signals when input
signals  are  injected  into  the  HNLF.  Various  logic  gates
can be implemented using a band pass filter  for a selec-
ted  frequency  band115−117.  In  a  three-input  system116 as
shown  in Fig. 11(a), one  probe  signal  and  two  data  sig-
nals are  launched  into  the  HNLF.  When  both  data  sig-
nals are 0 (off), one of them is 1 (on) or both of them are
1 (on),  the output  probe signal  has  three different  spec-
tra  as  shown  in Fig. 11(b).  Certain  critical  frequencies
correspond  to  different  logic  operations  if  the  filtered
output light  signal  intensity  is  used  to  indicate  the  out-
put value of the logic gate.

The SPM and CPM of HNLF can be combined with an
optical loop  mirror  interferometric  architecture  to  im-
plement  logic  gates118,119.  The  FWM effect  of  HNLF can
be exploited to realize logic gates based on the idle signal
strength120,  polarization  relationship121 and phase  rela-
tionship122,123.  The working principles are very similar to
the  corresponding SOA systems58−68.  Like  CPM in SOA,
the polarization rotation property of  HNLF can be used
to perform an XOR operation124.

An HNLF can usually support a much higher data rate
than an  SOA  and  the  fiber  nonlinearity  has  a  femto-
second  response  time.  However,  HNLF  typically  has  a
length of several meters to several kilometers, presenting
a challenging drawback in terms of fabrication and integ-
ration.

 Microscale and nanoscale waveguide
A waveguide is a structure used to guide electromagnetic
waves,  including  light.  It  can  be  fabricated  with  various
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materials  into  diversified  geometric  forms.  An  on-chip
optical  waveguide  consisting  of  a  germanium  (Ge)-
doped silica core and an undoped silica cladding on top
of a silicon substrate is widely used. Other common ma-
terial platforms include but not limited to III-V semicon-
ductor  materials,  lithium  niobate,  silicon  nitride-on-in-
sulator, and  silicon-on-insulator.  The  common  geomet-
ries include  slab  waveguide,  ridge  waveguide,  rib  wave-
guide, slot waveguide, and planar waveguide. Optical lo-
gic gates  can  be  implemented  by  waveguide  architec-
tures  using  various  nonlinear  effects125−134 and linear  in-
terference135−143.  Waveguide devices can be ultracompact
at  microscale  or  even  at  nanoscale  and  driven  by  low
power. It  has  great  potential  for  integration  with  elec-
tronic devices.

 General logic gate implementation with waveguide
The common nonlinearity effects in a waveguide include
FWM126−128, two-photon absorption (TPA)130,131, free car-
rier  effect131,133,  Raman scattering132,133,  XPM133 and non-
linear slot-waveguide coupling134.

The polarization  relationship  in  FWM  can  be  em-
ployed to implement various logic gates126,127. Only when
both  input  signals  are  co-polarized  and  aligned  to  the
TM  (or  TE)  mode  of  the  silicon  waveguide,  FWM  will
generate an idle output signal of a new frequency. Other-
wise,  FWM  will  not  occur  when  the  input  signals  have
orthogonal polarization states. The phase relationship in
FWM can also be used to implement an XOR gate with a
planar waveguide.  For  example,  a  chalcogenide  wave-
guide  is  a  suitable  candidate  for  this  kind  of
operation128,129.

A high power signal can deplete a low power signal in
a silicon waveguide by TPA130,131. The data signals A and
B with a low-power probe signal are injected into a wave-

guide  together.  When  A  and  B  are  both  equal  to  0  and
the total pump signal power is below the TPA threshold,
the probe signal will not be absorbed and its output is 1.
If there are only signals  A or B,  or if  there are both sig-
nals  A  and  B,  the  probe  signal  cannot  pass  through  the
waveguide  due  to  TPA.  This  is  a  NOR  gate  operation
based on TPA. It has been demonstrated that optical lo-
gic  gates  can  be  implemented  in  a  silicon-on-insulator
waveguide by using three nonlinear  phenomena includ-
ing  stimulated  Raman  scattering,  the  free  carrier  effect,
and XPM133.

The light signals in two-slot silicon waveguides placed
close to each other may be coupled under certain condi-
tions134. By injecting quasi-TM mode and quasi-TE mode
light  waves  into  the  input  ports  of  two  slot  waveguides,
the coupling  can  be  enabled  or  disabled.  The  signal  in-
tensity at  the  output  port  of  one  slot  waveguide  can  in-
dicate  the  logic  gate  output.  NOT,  OR,  and  AND  logic
gates can be realized.

π

The  linear  interference  of  coherent  light  signals  in  a
waveguide is  also important in logic gate design135−143.  It
is well known that two light waves with phase difference
0  will  interfere  constructively  (maximum  intensity)  and
two light waves with phase difference  will interfere de-
structively  (minimum intensity).  The  amplitude  of  each
individual light wave will also affect the final result of in-
terference. There are basically two ways to modulate the
amplitude  and  phase  of  multiple  input  light  signals  to
generate a desirable interference output to implement lo-
gic gates.

One  approach  is  to  optimize  the  length  and  loss  of
each  waveguide  path136,142 as  shown  in Fig. 12.  In Fig.
12(a),  the  path  length  from  Input  A  port  to  the  output
port is identical to that of Input B port. For two identical
coherent  input  light  signals,  the  output  signal  will  have
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enhanced intensity.  An OR gate can be realized approx-
imately. In Fig. 12(b), the path length from Input B port
to  the  output  port  is  (  denotes  the  wavelength)
longer  than  that  of  Input  A  port,  corresponding  to  a
phase  difference .  When only  Input  A or  Input  B is  0,
the output will  be 1.  When both input signals  are 1,  the
output will be 0 due to destructive interference. An XOR
gate can thus be realized. In Fig. 12(c), the paths from C
and B are  and  longer than that of A respectively,
corresponding  to  phase  differences  ( )  and  0  ( ).
Hence the  input  signals  from C and B will  interfere  de-
structively, the input signals from C and A will interfere
destructively, but input signals  from A and B will  inter-
fere  constructively.  The  input  signal  from  C  is  always
present as a reference and the output will be 1 if both the
signals  from A and B are 0.  When only the input signal
from A or B is 1, the output will be 0 due to destructive
interference.  When  the  input  signals  from  A  and  B  are
both 1, the signal will interfere constructively at first, and
then the enhanced signal interferes destructively with the
signal  from C.  However,  the  final  output  is  still  1,  since
the enhanced  combined  signal  has  much  higher  intens-
ity than  the  signal  from  C.  An  XNOR  gate  can  be  real-
ized based on the working principles described above.

Another approach  is  the  direct  modulation  of  amp-
litude and phase for each input light signal by an attenu-
ator  cooperated  with  a  Soleil –Babinet  compensator
(SBC)139 or a PID regulator140. In this scheme, the wave-
guide is  a  fixed  and  symmetric  two-port  Y-shape  struc-
ture or  a  three-port  structure,  including  a  constant  ad-
justment signal. The path lengths of the two branches are
identical. The  complex-amplitude  modulation  coeffi-
cients of input amplitude and phase for different types of
logic  gates  are  optimized  to  maximize  the  extinction

x1 x2

|αx1 + βx2 + γ|2

between logic 0 and 1139, shown in Table 2. It is assumed
that the two logic gate input values are  and  (0 or 1).
The logic  gate  output  value  is  indicated  by  the  light  in-
tensity of waveguide output . Multimode
interference is  used  to  design  logic  gates  with  wave-
guides as well143.
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 Periodically poled lithium niobates (PPLNs)
waveguide
By  comparison  with  conventional  waveguides,  a  PPLN
waveguide  has  the  unique  feature  of  cascaded  second-
harmonic generation  and  difference-frequency  genera-
tion  (SHG+DFG)  if  the  quasi-phase  matching  (QPM)
wavelength  condition  is  satisfied144−151.  When  two  data
signals A and B with different  frequencies  are  transmit-
ted into the PPLN waveguide together with another con-
tinuous wave pump signal C, a new signal D at the sum
of  the  frequencies  will  be  generated  due  to  SHG  effect.

 
Table 2 | Optimized complex-amplitude modulation coefficients of input amplitude and phase for different types of logic gates. Table re-

produced with permission from ref.139, American Chemical Society.
 

Types of gates
Optimal parameters Output light intensities for different input values

Output intensity contrast ratios
α β γ (0, 0) (1, 0) (0, 1) (1, 1)

OR 1 e
i2π
3 0 0 1 1 1 Infinity

AND
2
3

2
3

−
1
3

1
9

1
9

1
9 1 9∶1

NOT 1 0 −1 1 0 1 0 Infinity

NAND 1 e
i2π
3 e−

i2π
3 1 1 1 0 Infinity

NOR
2
3

2
3 −1 1

1
9

1
9

1
9

9∶1

XOR 1 −1 0 0 1 1 0 Infinity

XNOR 1 1 −1 1 0 0 1 Infinity
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Then it  is  simultaneously  transformed into  a  pump sig-
nal C and a new idle signal E by DFG. Furthermore, the
original  signal  A  and  B  are  depleted.  An AND gate  can
be implemented easily by detecting the intensity of D or
E  when  A  and  B  are  regarded  as  two  input  values.  The
output signals of two PPLN waveguides with A and B as
input signals can be further combined in parallel through
a coupler. Then a XOR gate can be realized by detecting
the intensity of A (or B) alone in the output. If A and B
are both present in the input ports, they will be depleted
by SHG+DFG effect and disappear in the output. Never-
theless,  A  or  B  as  the  sole  input  can  pass  through  the
waveguide. The output of a PPLN waveguide with A and
B as input signals  can also be combined in parallel  with
the original input signal A, which can act as an OR gate
by detecting A in the output. The trade-off is that PPLN
needs to work under precise temperature control.

 Microring resonator waveguide

f

A  silicon  microring  resonator  is  typically  coupled  to  a
straight  waveguide152−161,  as  shown  in Fig. 13. A  reson-
ance  at  a  certain  frequency  will  be  generated  by  this
system.  The  output  of  the  straight  waveguide  will  be
nearly  zero  when  the  microring  resonates.  If  a  pump
pulse with  sufficient  power  is  applied,  the  refractive  in-
dex of the microring will be changed by two-photon ab-
sorption (TPA)  and  the  resonance  frequency  will  in-
crease (blue shift).
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Fig. 13 | Microring resonator coupled with a straight waveguide
with both pump signal and probe signal are injected into the in-
put of  the straight waveguide. Figure reproduced with permission

from ref.154, © The Optical Society.
 

Two input pump pulses A and B at another frequency
can be designed so that one alone has insufficient power
for  blue  shift  but  the  sum  of  them  reaches  the  power
threshold for blue shift. When a probe light signal is ini-
tially  tuned  to  a  resonance,  the  output  will  be  0.  When
only A or B is 1, the output will still be 0. However, when

both A and B are 1, the probe light will be out of reson-
ance  due  to  the  blue  shift  of  the  resonant  frequency.
Consequently,  the  output  will  only  be  1,  in  this  case,
making an AND gate.

output=1

output=0

Alternatively, the probe light is originally out of reson-
ance  at  a  frequency  slightly  smaller  than f ( ).
Only when both A and B are 1 will the probe light be at
resonance  since  the  resonance  frequency  increases
( ), resulting in a NAND operation.

In addition, AND and NAND gates can be implemen-
ted based on FWM instead of TPA157. In ref.158, two sym-
metric microring resonators are cascaded, and the NOR
gate  is  realized  by  producing  an  output  signal  of  0  at
either  resonance.  By  properly  interconnecting  multiple
microring  configurations159,  various  logic  gates  such  as
NAND, AND, OR, and NOR can be realized. Its unique
feature is that the input and output signals have the same
wavelength (or  frequency).  Varying  the  resonant  fre-
quency  between  clockwise  and  counterclockwise
propagating  light  signals  can  be  employed  in  logic  gate
design as well160.

 Surface plasmon polariton (SPP)
SPP refers to electron oscillation at the interface between
two  materials  excited  by  electrons  or  photons.  SSP  can
overcome diffraction limits and reduce the size of bulky
devices to densely integrated single chips. An SPP wave-
guide is commonly an air slot etched in a very thin metal
film  (e.g.  gold  or  silver)  on  a  silicon  dioxide  substrate.
The  reported  device  has  a  size  less  than  5  μm  and  can
perform very precise phase control and ensure a high ex-
tinction  ratio  up  to  24  dB142.  The  linear  interference  is
commonly  used  to  implement  logic  gates  in  an  SPP
waveguide161−174,139,140,142. The precision of  phase modula-
tion can be improved in various ways162,166. The coupling
of  optical  signals  can  assist  the  design  of  logic  gate  as
well167,168. A multifunctional and multichannel all-optical
logic gate based on the in-plane coherent control of loc-
alized SPP is proposed in ref.169. An Au nanorod array is
first placed on the Si substrate. Three plane-wave beams
with the same wavelength including a TM-polarized con-
trol beam and two TE-polarized signal  beams in oppos-
ite directions are coupled to the planar waveguide169. The
output  light  intensities  of  nanorods  at  different  spatial
locations will  provide different outputs for various logic
gates.

 Nanowire
Nanowires are another type of nanophotonic waveguide

Jiao SM et al. Opto-Electron Sci  1, 220010 (2022) https://doi.org/10.29026/oes.2022.220010

220010-11

 



device  that  can  be  used  for  optical  logic  gate
computing175−182.  The  phase  relationship  of  FWM  in  a
single silicon nanowire can satisfy the requirement of an
XOR logic gate175,176, as with SOA and HNLF.

If the polarization and phase of input excitation lasers
are properly  controlled,  the  linear  interference  of  plas-
mon  signals  allows  the  approximate  implementation  of
AND,  OR,  XOR  and  NOT  gate  with  a  simple  X  or  Y-
shaped  gold  nanowire  network177,  as  shown  in Fig. 14.
NAND  and  NOR  gates  can  be  realized  by  cascading  an
AND  gate  (OR  gate)  and  a  NOT  gate177,178.  A  common
disadvantage of  these  nanowire  schemes  is  that  the  ex-
tinction ratio between the output signal  intensities for 1
and 0 is relatively low for some types of logic gates.
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Fig. 14 | Simple nanowire networks for logic gates (input marked
in red and output marked in blue). Figure reproduced with permis-

sion from ref.177, American Chemical Society.
 

 Photonic crystal structures
Photonic  crystals  are  optical  structures  consisting  of
periodic  geometric  lattices.  If  the  frequency  of  incident
light  lies  within the photonic band gap,  the light  can be
trapped  in  the  photonic  crystal  structure.  Two-dimen-
sional  photonic  crystals  such  as  a  silicon  substrate  with
etched dielectric holes or a system of dielectric rods in air
are commonly  used.  The  periodicity  of  dielectric  func-
tions in a photonic crystal can be broken by introducing
point  defects  and  line  defects  (removing  or  modifying
some dielectric  rods).  Consequently,  cavities  and  wave-
guides can be constructed within photonic crystals.

Several different effects in photonic crystals have been
investigated183,184 to implement optical logic gates includ-
ing interference of self-collimated light185−187, multi-mode
interference  (MMI)188−190,  coherent  interference  with

phase  difference,  microring  resonators  and  nonlinear
effects.

 Interference of self-collimated light

π/2

As  an  example  of  self-collimated  light  interference185,  a
diagonal line  defect  is  created  by  replacing  the  high  re-
fractive  index  dielectric  rods  with  low  refractive  index
air,  as  shown  in Fig. 15.  As  a  result,  the  incident  light
beams in both the horizontal and vertical directions will
be  partially  reflected  by  the  line  defect  and  transmitted
through  the  line  defect.  The  collimated  reflected  and
transmitted  light  beams  can  interfere  constructively  or
destructively  if  an  appropriate  initial  phase  difference  is
set (e.g. ). The output light intensity in the horizont-
al or vertical direction can provide the correct logic gate
output results (e.g. OR gate and XOR gate).
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Fig. 15 | Self-collimated  light  interference  in  photonic  crystals
for logic gates (Input: I1 and I2, Output: O1 or O2)185. Figure repro-

duced with permission from ref.185, © The Optical Society.
 

 Multi-mode interference (MMI)

π
π/2

−π/2

In a four-port system based on MMI189 as shown in Fig.
16,  when  a  light  wave  is  launched  into  the  input  port,
guided modes  will  be  excited  in  the  middle  region con-
necting  input  ports  and  output  ports,  which  propagate
periodically in the propagation direction.  When there is
a certain phase difference between the input light waves
of the two ports, the mode intensity distribution is more
dense in the area close to one of the two output ports. In
this case, one output port will have 1 and another output
port will  have 0.  Four types of logic gates were investig-
ated in ref.189 with different phase settings. For example,
a  phase  of  0  represents  1  and  a  phase  of  represents  0
for Input 1, and a phase of  represents 1 and a phase
of  represents 0 for Input 2, when the system oper-
ates  as  an  XOR  gate.  For  convenience,  the  initial  phase
setting can be converted to a path length difference190.
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 Linear interference with phase difference

0 π

As in  conventional  waveguides,  constructive  and  de-
structive linear interference between two input light sig-
nals with a phase difference of  or  enables logic gates
to  be  designed in  photonic  crystals191−200. The phase  dif-
ference  can  be  generated  by  variation  in  path  length,  as
shown in Fig. 17. Some point defects can be added to as-
sist  light  propagation  in  the  slot  waveguide  (line
defect)198−200.

 Microring resonator structure
A  microring  resonator  can  be  fabricated  by  removing
dielectric rods in a photonic crystal.  A microring placed
near  a  slot  waveguide  can  control  whether  light  passes
through the  waveguide  or  not201−211. The coupling inter-
actions  between  multiple  slot  waveguides  and  multiple
microrings need to be taken into account205−207,209−211. The
constructive  and  destructive  interference  of  clockwise
and counter-clockwise  propagating  signals  within  a  mi-
croring  is  another  critical  design  consideration207,209.  In
addition,  a  cavity  can  perform  the  same  function  as  a

microring212.
In Fig. 18(a), a  slot  waveguide  coupled  with  two  mi-

crorings201,203,204,208 can operate as either an AND gate or a
NOR gate. The two control signals are regarded as Input
A and Input B.  If  the microrings initially resonate,  both
control  signals  can  change  the  resonant  frequency  and
the probe light signal P with not be coupled with micror-
ings. The light can pass the slot waveguide in the middle
(AND gate). If the two original microrings are out of res-
onance, the  two  control  signals  can  activate  the  micro-
ings to couple with the probe signal (NOR gate).

In Fig. 18(b), for  Input  A,  the  light  field  is  first  in-
duced  by  the  top  microring  and  then  induced  by  the
middle ring, including both clockwise and counterclock-
wise components. Consequently, the output will be 1 and
the same can be applied to Input B.  When both two in-
put signals  are  activated,  the  signal  interferes  construct-
ively  at  the  output  port  (OR  gate)206.  However,  if  this
symmetry  is  broken,  destructive  interference  will  yield
other types of logic gates207.

 Nonlinear effects
Nonlinear Kerr medium can be inserted into the photon-
ic crystal lattice to form a switch cavity213−219. The state of
the switch can be changed if a control signal has a power
over the threshold.  Complementary photonic crystal  in-
tegrated  logic  devices  (CPCL)  with  universal  logic  gate
integration capabilities  are  proposed.  Examples  of  other
approaches  include  topological  cavity  and  edge
states220,221,  FWM129,  coupling  of  neighboring  cores  in  a
photonic  crystal  fiber222,223,  MZI224,  Raman  scattering225,
and 3D photonic structure with metamaterial226.

 Discussion, future prospect and conclusion
This  paper  reviewed achievements  in  the  area  of  all-op-
tical  logic  gate  computing,  where  five  different  major
types  of  schemes  reported  in  the  last  decades  were
demonstrated  and  discussed,  including  spatial  encoding
of  light  fields,  SOA,  HNLF,  microscale  and  nanoscale
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Fig. 16 | Logic  gates  based on  MMI  in  a  photonic  crystal  (input
in the left and output in the right). Figure reproduced with permis-

sion from ref.189, Elsevier.
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waveguides,  and  photonic  crystal  structures.  All  the
methods presented above involve largely different work-
ing  principles  and  present  diverse  advantages.  Besides,
other  solutions  are  also  reported  in  previous  literature
such  as  EIT  effect227,228,  electro-optic  effect  with
MZI229−232,  optical  gradient  force233, vertical-cavity  sur-
face-emitting  laser  (VCSEL)234,235 and  black
arsenic –phosphorus236.  To  sum  up,  a  huge  amount  of
macroscale, microscale  and  even  nanoscale  optical  sys-
tems have proved to be potential candidates for all-optic-
al  logic  gate  systems.  In  practical  experiments,  Boolean
logic rules can be implemented optically. Great progress
has  been  made  in  the  design  of  high-speed,  compact,
low-power-consumption  and  integrated  all-optical  logic
gates.  Although phased progress  has  been made,  all-op-
tical logic gates remain mainly at the laboratory research
stage and still have a long way to go before industrial ap-
plications are realized.

At present, the capability of an optical logic gate com-
puting system to  perform logic  functions  is  still  insuffi-
cient  for  it  to  become  a  really  viable  option.  In  spite  of
this,  several  necessary  requirements  for  a  qualified logic
gate have been proposed237.  Firstly,  the cascadability is a
critical  issue  and  a  demonstration  of  individual  logic
gates without interconnections is inadequate. The format
of  the  output  optical  signal  must  be  consistent  with  the
format of the input signal. For example, cascadability can
be a challenging task if the input value is represented by
light  phase  and  the  output  value  is  represented  by  light
intensity. Besides,  the  fan-out  is  a  very  important  ele-
ment. The output light signal of logic gate must be easily
duplicated since it may be used to drive at least two fur-
ther  gates.  Moreover,  logic-level  recovery  needs  to  be
taken  into  account.  If  the  intermediate  light  signal  in  a
logic  gate  network  has  an  intensity  (phase,  polarization
angle  or  others)  that  deviates  from the predefined value
for 1 or 0 due to fluctuation and noise, it needs to be re-

stored  otherwise  the  accumulated  deviations  will  finally
produce  erroneous  results.  In  addition,  the  isolation
between inputs and outputs is critical. It is not desirable
that the output of a logic gate feeds back to the input of
the logic gate. Unfortunately, the feedback phenomenon
is  common  in  many  optical  systems.  Furthermore,  the
system is  required  to  have  no  critical  biasing.  It  is  un-
desirable that the system relies on very strict and precise
conditions.  However,  optical  systems often rely  on high
precision.  For  example,  coherent  light  interference  may
need very precise separation distances between compon-
ents  to  achieve  accurate  relative  phases.  Last  but  not
least, the logic level shall be independent of loss. When a
light signal propagates, it will inevitably suffer power loss
and the logic level threshold between 0 and 1 will change,
which mitigates against this requirement.

It is  almost  impossible  to  satisfy  all  these  require-
ments  in  any of  the  optical  logic  gate  schemes reviewed
in this  paper.  There  will  be  much  space  for  further  im-
provement from all these aspects in future works. In ad-
dition to the basic requirements stated above, optical lo-
gic  gates  are  expected  to  demonstrate  advantages  over
electronic  logic  gates  in  terms  of  common metrics  such
as  speed  of  operation,  device  size,  power  efficiency  and
extinction ratio.  More  comparative  studies  between real
electronic and optical logic gate systems can be conduc-
ted in future works.

In  this  paper,  the  authors  mainly  focus  on  all-optical
logic  gate  computing.  An  alternative  third  approach  in
addition  to  all-optical  logic  gates  and  electronic  logic
gates is  that electronics and photonics can be integrated
for  logic  gate  design238−240. The  cooperation  of  electron-
ics  and  photonics  can  be  realized  in  various  ways.  One
typical  example  is  optical  directed  logic238 where elec-
tronic signals are employed to control the status of optic-
al  switches  to  perform logic  gate  functions.  In  this  case,
the logic gates have electronic input signals and photonic
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Fig. 18 | Two examples of microring structures in a photonic crystal: (a) AND gate (or NOR gate); (b) OR gate. Figure reproduced from: (a) ref.204,
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output signals. The optoelectronic logic gate schemes can
combine  the  advantages  of  both  optical  computing  and
digital  computing.  They  are  relatively  more  consistent
with  the  current  electronic  computing  platforms.
However,  all-optical  logic  gate  computing  schemes  are
free of mutual conversion between electronic signals and
optical signals. They can be directly applied to many op-
tical  sensing,  communication  and  display  applications.
In  addition,  the  inherent  advantages  of  photonics  over
electronics can be better fully utilized by all-optical logic
gates.

Nowadays, many research works only focus on the im-
plementation  of  an  individual  optical  logic  gate.
However, it is obvious that the implementation of a com-
puter  system  or  a  logic  circuit  system  for  performing
complex tasks (e.g. artificial intelligent tasks) is the final
objective.  A  larger  scale  optical  logic  computing  system
can be attempted by using many individual logic gates as
fundamental  building  blocks.  At  the  moment,  some
devices consisting  of  multiple  logic  gates  have  been  im-
plemented such  as  a  canonical  logic  units-based  pro-
grammable  logic  array  (CLUs-PLA)241,  half-adder  and
half-substractor145,162,200,242,  minterm243,  S-R  flip-flop244,
divider  circuit245 and  encoder  &  comparator246.  At  all
events, more advanced systems remain to be further in-
vestigated  in  future.  It  is  favorable  that  a  photonic  chip
integrated with massive optical logic gates can be eventu-
ally implemented with novel silicon photonics technolo-
gies.  Apart  from  building  a  universal  optical  computer,
optical logic gates may exhibit their unique advantages in
some  specialized  applications.  In  addition  to  the  well-
known all-optical  signal  processing  application  for  fiber
communications,  other  new  application  scenarios  such
as optical data storage247 can be explored further.

Based  on  the  discussions  above,  several  additional
comments for all-optical  logic gate computing are given
below.  First,  in  electronic  computing,  individual  logic
gate components are implemented first and a more com-
plicated logic circuit system is constructed with multiple
individual  gates.  A  large-scale  logic  computing  system
can  be  constructed  by  an  assembly  of  small-scale  logic
computing blocks. Since serial interconnections and cas-
cading of fundamental components can be easily accom-
plished  in  electronics,  the  “construct  a  building  from
bricks”  mechanism stated  above  becomes  a  feasible  op-
tion.  But  photonics  supports  more  parallel  multiplexing
and less  serial  interconnection  compared  with  electron-
ics. In optical logic gate computing, it may not be neces-

sary  to  exactly  follow  and  replicate  the  electronic  logic
gate computing mechanism. Novel optical logic comput-
ing  architectures  can  be  developed248.  For  example,  a
complicated logic computing system can be modeled as a
single “black box” in optics instead of being decomposed
into  more  fundamental  individual  components.  Second,
in  optical  analogue  computing,  optical  neural  network
has  been  extensively  investigated  in  recent  years  and
much progress has been made. A neural network consist-
ing of  many  layers  of  neurons  and  a  logic  circuit  com-
puting system  consisting  of  many  interconnected  indi-
vidual logic  gates  have  some  similarity.  They  both  in-
volve linear  weighted  summation  and  nonlinear  math-
ematical  calculation.  Binary  neural  networks  have  more
common features than logic computing systems. In fact,
a  simple  neural  network can be  used to  model  any type
of logic gate or a basic logic circuit accurately. The bridge
between  optical  analogue  computing  and  optical  logic
gate  computing  may  be  built  in  future  works.  Third,  in
both  optical  analogue  computing  and  optical  logic  gate
computing, the  lack  of  optimal  nonlinear  optical  ele-
ments  is  a  critical  challenge.  In  optical  neural  network,
the linear weight  summation calculation can be realized
successfully in several different ways. But all-optical non-
linear  activation  functions  are  much  more  difficult  to
realize.  For  microscale  and nanoscale  optical  logic  gates
with on-chip waveguides and photonic crystal structures,
linear interference  of  coherent  light  signals  is  one  ap-
proach but  it  has  several  limitations.  The  nonlinear  op-
tical  effects  are  more  promising.  However,  currently,
there is almost no ideal optical nonlinear effect with sim-
ultaneous  low-power  excitation,  fast  response  and  easy
implementation.  This  obstacle  hinders  the  development
of  optical  logic  gate,  optical  neural  network  and  other
optical  computing  research  works.  The  investigation  on
emerging  highly  nonlinear  optical  materials249,250 may
open up new potential opportunities.

It  has to be pointed out that  significant  achievements
have  been  made  in  the  field  of  all-optical  logic  gate
design  in  recent  decades.  While,  a  number  of  critical
challenges are yet to be overcome before the technology
can move from the laboratory into a real world of com-
plicated  environment  in  the  future,  the  exploration  of
new materials and systems will be an effective way to im-
prove  an  all-optical  logic  gate  computing  system.  It  can
be  predicted  that  with  further  research,  there  will  be
more  powerful  and  more  practical  all-optical  logic  gate
computing systems.
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